This C++ Program demonstrates the Sudoku Problem using Backtracking.
Here is source code of the C++ Program to solve the Sudoku Problem
using BackTracking. The C++ program is successfully compiled and run on a
Linux system. The program output is also shown below. Code:
/*C++ Program to Solve Sudoku Problem using BackTracking */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
#define UNASSIGNED 0
#define N 9
bool FindUnassignedLocation(int grid[N][N], int &row, int &col);
bool isSafe(int grid[N][N], int row, int col, int num);
/* assign values to all unassigned locations for Sudoku solution
*/
bool SolveSudoku(int grid[N][N])
{
int row, col;
if (!FindUnassignedLocation(grid, row, col))
return true;
for (int num = 1; num <= 9; num++)
{
if (isSafe(grid, row, col, num))
{
grid[row][col] = num;
if (SolveSudoku(grid))
return true;
grid[row][col] = UNASSIGNED;
}
}
return false;
}
/* Searches the grid to find an entry that is still unassigned. */
bool FindUnassignedLocation(int grid[N][N], int &row, int &col)
{
for (row = 0; row < N; row++)
for (col = 0; col < N; col++)
if (grid[row][col] == UNASSIGNED)
return true;
return false;
}
/* Returns whether any assigned entry n the specified row matches
the given number. */
bool UsedInRow(int grid[N][N], int row, int num)
{
for (int col = 0; col < N; col++)
if (grid[row][col] == num)
return true;
return false;
}
/* Returns whether any assigned entry in the specified column matches
the given number. */
bool UsedInCol(int grid[N][N], int col, int num)
{
for (int row = 0; row < N; row++)
if (grid[row][col] == num)
return true;
return false;
}
/* Returns whether any assigned entry within the specified 3x3 box matches
the given number. */
bool UsedInBox(int grid[N][N], int boxStartRow, int boxStartCol, int num)
{
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)
if (grid[row+boxStartRow][col+boxStartCol] == num)
return true;
return false;
}
/* Returns whether it will be legal to assign num to the given row,col location.
*/
bool isSafe(int grid[N][N], int row, int col, int num)
{
return !UsedInRow(grid, row, num) && !UsedInCol(grid, col, num) &&
!UsedInBox(grid, row - row % 3 , col - col % 3, num);
}
/* print grid */
void printGrid(int grid[N][N])
{
for (int row = 0; row < N; row++)
{
for (int col = 0; col < N; col++)
cout<<grid[row][col]<<" ";
cout<<endl;
}
}
/* Main */
int main()
{
int grid[N][N] = {{3, 0, 6, 5, 0, 8, 4, 0, 0},
{5, 2, 0, 0, 0, 0, 0, 0, 0},
{0, 8, 7, 0, 0, 0, 0, 3, 1},
{0, 0, 3, 0, 1, 0, 0, 8, 0},
{9, 0, 0, 8, 6, 3, 0, 0, 5},
{0, 5, 0, 0, 9, 0, 6, 0, 0},
{1, 3, 0, 0, 0, 0, 2, 5, 0},
{0, 0, 0, 0, 0, 0, 0, 7, 4},
{0, 0, 5, 2, 0, 6, 3, 0, 0}};
if (SolveSudoku(grid) == true)
printGrid(grid);
else
cout<<"No solution exists"<<endl;
return 0;
}
Output:
$ g++ sudoku.cpp
$ a.out
3 1 6 5 7 8 4 9 2
5 2 9 1 3 4 7 6 8
4 8 7 6 2 9 5 3 1
2 6 3 4 1 5 9 8 7
9 7 4 8 6 3 1 2 5
8 5 1 7 9 2 6 4 3
1 3 8 9 4 7 2 5 6
6 9 2 3 5 1 8 7 4
7 4 5 2 8 6 3 1 9
------------------
(program exited with code: 1)
Press return to continue
<<Previous Page Download Code Next Page>>